Kansainvälisten e-aineistojen haku vaatii toistaiseksi kirjautumista, jotta hakuja voi tehdä.

Haku

Studies on the peroxisomal multifunctional enzyme type-1:domain structure with special reference to the hydratase/isomerase fold

QR-koodi

Studies on the peroxisomal multifunctional enzyme type-1:domain structure with special reference to the hydratase/isomerase fold

Abstract

The peroxisomal multifunctional enzyme type-1 (perMFE-1) is a monomeric protein of β-oxidation possessing 2-enoyl-CoA hydratase-1, Δ³-Δ²-enoyl-CoA isomerase, and (3S)-hydroxyacyl-CoA dehydrogenase activities. The amino-terminal part of perMFE-1 shows sequence similarity to mitochondrial 2-enoyl-CoA hydratases (ECH-1) and Δ³-Δ²-enoyl-CoA isomerases, and belongs to the hydratase/isomerase superfamily. Family members with known structures are either homotrimers or homohexamers. The purpose of this work was to elucidate the structure-function relationship of the rat perMFE-1 with special reference to the hydratase/isomerase fold.

The structural adaptations required for binding of a long chain fatty acyl-CoA were studied with rat ECH-1 via co-crystallization with octanoyl-CoA. The crystal structure revealed that the long chain fatty acyl-CoA is bound in an extended conformation. This is possible because, a flexible loop moves aside and opens a tunnel, which traverses the subunit from the solvent space to the intertrimer space.

Structural and enzymological studies have shown the importance of Glu144 and Glu164 for the catalysis by ECH-1. In the present work the enzymological properties of Glu144Ala and Glu164Ala variants of ECH-1 were studied. The catalytic activity of hydration was reduced about 2000-fold. It was also demonstrated that rat ECH-1 is capable of catalyzing isomerization. The replacement of Glu164 with alanine reduced the isomerase activity 1000-fold, confirming the role of Glu164 in both the hydratase and isomerase reactions. The structural factors favoring the hydratase over the isomerase reaction were addressed studying the enzymological properties of the Gln162Ala, Gln162Met, and Gln162Leu variants. These mutants had similar enzymatic properties to wild type, thus the catalytic function of the Glu164 side chain in the hydratase and isomerase reaction does not depend on interaction with the Gln162 side chain.

The perMFE-1 was divided into five functional domains based on amino acid sequence comparisons with the homologous proteins with known structures. Deletion variants of perMFE-1 showed that the folding of an enzymatically active amino-terminal hydratase/isomerase domain requires stabilizing interactions from the two carboxy-terminal domains of perMFE-1. The last carboxy-terminal domain is also required for the folding of the dehydrogenase part of perMFE-1. The dehydrogenase part of perMFE-1 was crystallized.

Tallennettuna:
Kysy apua / Ask for help

Sisältöä ei voida näyttää

Chat-sisältöä ei voida näyttää evästeasetusten vuoksi. Nähdäksesi sisällön sinun tulee sallia evästeasetuksista seuraavat: Chat-palveluiden evästeet.

Evästeasetukset