Haku

Synthesis of porous dielectric materials for future wireless high frequency applications

QR-koodi

Synthesis of porous dielectric materials for future wireless high frequency applications

Abstract

In future, high frequency applications and devices need to be able to cope with ultra-reliable and extremely low-latency data transmission, thus dielectrics of substrates and other structural components are expected to have low relative permittivity and loss factor to ensure the ideal propagation of electromagnetic waves; this may be achieved by introducing pores into the material. In the present work, various porous silica-based dielectric materials and composites with excellent electromagnetic properties at millimeter wave frequency bands and beyond have been developed. First, a porous composite of silica nanoshells and cellulose nanofibers was made having permittivity and loss factor of 1.19 and 0.01 at 300 GHz, respectively. Next, to achieve even better electromagnetic performance, a nanocellulose film-enveloped silica foam was synthetized with a porosity of 98.9%, resulting in extremely low permittivity and loss factor (1.02 and 0.0003, respectively at 300 GHz). The feasibility of the two silica-cellulose-based materials for high frequency applications was demonstrated by sputtering thin metal film patterns on their surfaces for filter and lens applications operating at 300 GHz. The synthetized dielectrics are suitable candidates for devices operating at higher frequencies, according to their electromagnetic properties, measured up to 2 THz. Finally, our research was focusing on porous dielectric materials which had higher mechanical strength; therefore, porous composites of silica nanoshells and poly(methyl methacrylate) were synthetized, having dielectric permittivity and loss factor of 1.51 and 0.004, respectively, at 200 GHz. Capitalizing on the thermoplastic behavior of the composite, it was processed further by hot pressing in a mold to produce a bullet shaped refractive lens, with operating frequency at around 140 GHz. The results presented in this thesis show a great potential of porous silica materials as dielectric substrates for future high frequency devices. Although the developed materials are highly porous, the silica nanostructures, together with the binders or envelope films, could form structural components having sufficient surface smoothness to support metal micropatterns of split-ring resonator arrays and Fresnel lenses or to form air-matter interfaces suitable for refractive components such as bullet-shaped lenses.

Tiivistelmä

Tulevaisuuden suurtaajuussovelluksissa laitteiden on kyettävä erittäin luotettavaan ja alhaisen viiveen tiedonsiirtoon, joten substraateilta ja muiden rakenteellisten komponenttien dielekteiltä odotetaan sekä alhaista suhteellista permittiivisyyttä että häviökerrointa sähkömagneettisten aaltojen ihanteellisen etenemisen varmistamiseksi. Tämä voidaan saavuttaa esimerkiksi lisäämällä materiaaliin huokoisuutta. Tässä työssä on kehitetty erilaisia huokoisia piidioksidipohjaisia dielektrisiä materiaaleja ja komposiitteja, joilla on erinomaiset sähkömagneettiset ominaisuudet millimetrin ja sitä pienemmillä aallonpituuksilla. Ensimmäisenä valmistettu materiaali oli huokoinen piidioksidin nanokuorista ja selluloosananokuiduista koostuva komposiitti, jonka permittiivisyys ja häviökerroin olivat 1.19 ja 0.01 300 GHz:n taajuudella. Vielä paremman sähkömagneettisen suorituskyvyn saavuttamiseksi syntetisoitiin nanoselluloosakalvopäällysteinen silikavaahto, jonka huokoisuus oli 98.9 %, mikä johti erittäin matalaan permittiivisyyteen ja häviökertoimeen (vastaavasti 1.02 ja 0.0003 300 GHz:n taajuudella). Näiden kahden silika-selluloosapohjaisen materiaalin soveltuvuus suurtaajuussovelluksiin osoitettiin sputteroimalla metallisia ohutkalvokuvioita materiaalien pinnoille suodatin- ja linssisovelluksia varten. Vaikka esitetyt laitteet on suunniteltu toimimaan 300 GHz:n taajuudella, syntetisoidut dielektridit soveltuvat sähkömagneettisilta ominaisuuksiltaan myös korkeammilla taajuuksilla toimiviin laitteisiin aina 2 THz:iin asti. Viimeisenä vaiheena tutkimus keskittyi paremman mekaaninen lujuuden huokoisiin dielektrisiin materiaaleihin. Nämä komposiitit syntetisoitiin huokoisista piidioksidin nanokuorista ja poly(metyylimetakrylaatista), ja niiden dielektrinen permittiivisyys ja häviökerroin saavuttivat 1.51 ja 0.004 arvot 200 GHz:llä. Hyödyntäen komposiitin termoplastisia ominaisuuksia se jatkoprosessoitiin kuumapuristamalla muotissa luodin muotoiseksi taittolinssiksi, jonka toimintataajuus oli noin 140 GHz. Tässä väitöskirjassa esitetyt tulokset osoittavat huokoisten piidioksidimateriaalien suuren potentiaalin tulevaisuuden suurtaajuuslaitteiden dielektrisinä materiaaleina. Vaikka kehitetyt materiaalit ovat erittäin huokoisia, piidioksidin nanorakenteet voivat yhdessä sideaineiden tai -kalvojen kanssa muodostaa rakenteellisia komponentteja, joiden pinta on riittävän sileä tukemaan halkaistujen rengasresonaattoriryhmien ja Fresnel-linssien metallisia mikrokuvioita tai muodostamaan ilma-materiaalirajapintoja refraktiokomponenteille, kuten luodin muotoisille linsseille.

Tallennettuna:
Kysy apua / Ask for help

Sisältöä ei voida näyttää

Chat-sisältöä ei voida näyttää evästeasetusten vuoksi. Nähdäksesi sisällön sinun tulee sallia evästeasetuksista seuraavat: Chat-palveluiden evästeet.

Evästeasetukset