Haku

Preparation of nano-sized 6MgO–2Y2O3–ZrO2 powders by a combined co-precipitation and high energy ball milling process

QR-koodi

Preparation of nano-sized 6MgO–2Y2O3–ZrO2 powders by a combined co-precipitation and high energy ball milling process

Abstract

Nanostructured ceramic materials doped with stabilizers have superior mechanical, chemical, and electrical properties. In this study, tetragonal zirconia stabilized by 6 mol% MgO and 2 mol% Y₂O₃ (t-6MgO–2Y₂O₃–ZrO₂) nanopowders with quasi-spherical morphology, uniform particle size, and narrower grain size distributions were prepared by a combination process including two steps: namely co-precipitation and high-energy ball milling. The effect of ball milling time on ZrO₂ crystal particles was investigated by characterizations including XRD, Raman, FT-IR, FEESM, BET, and TEM. With the increase of ball milling time, the average grain size of the powder showed a gradual decrease tendency, the particle size distribution changed from wide to narrow, the particle morphology tended to be spherical, and the specific surface area gradually increased. Under the optimized conditions (ball milling for 8 h, calcination temperature of 800 °C, and holding time of 2 h), the highly dispersed spherical nanopowders with a minimum particle size of 18.47 nm and an average particle size of 29.02 nm were obtained. These zirconium oxide nanopowders are suitable for the preparation of inorganic coatings, biomedical materials, catalyst materials, and other types of functional materials.

Tallennettuna:
Kysy apua / Ask for help

Sisältöä ei voida näyttää

Chat-sisältöä ei voida näyttää evästeasetusten vuoksi. Nähdäksesi sisällön sinun tulee sallia evästeasetuksista seuraavat: Chat-palveluiden evästeet.

Evästeasetukset