Haku

Application of machine learning and remote sensing for gap-filling daily precipitation data of a sparsely gauged basin in East Africa

QR-koodi

Application of machine learning and remote sensing for gap-filling daily precipitation data of a sparsely gauged basin in East Africa

Abstract

Access to spatiotemporal distribution of precipitation is needed in many hydrological applications. However, gauges often have spatiotemporal gaps. To mitigate this, we considered three main approaches: (i) using remotely sensing and reanalysis precipitation products; (ii) machine learning-based approaches; and (iii) a gap-filling software explicitly developed for filling the gaps of daily precipitation records. This study evaluated all approaches over a sparsely gauged basin in East Africa. Among the examined precipitation products, PERSIANN-CDR outperformed other satellite products in terms of root mean squared error (7.3 mm), and correlation coefficient (0.46) while having a large bias (50%) compared to the available in situ precipitation records. PERSIANN-CDR also demonstrates the highest skill in distinguishing rainy and non-rainy days. On the other hand, Random Forest outperformed all other approaches (including PERSIANN-CDR) with the least relative bias (-2%), root mean squared error (6.9 mm), and highest correlation coefficient (0.53).

Tallennettuna:
Kysy apua / Ask for help

Sisältöä ei voida näyttää

Chat-sisältöä ei voida näyttää evästeasetusten vuoksi. Nähdäksesi sisällön sinun tulee sallia evästeasetuksista seuraavat: Chat-palveluiden evästeet.

Evästeasetukset